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Invariant Inference 

•  An old problem 

•  A different approach with two ideas: 
1.  Separate invariant inference from the rest of the 

verification problem 
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Why? 

 
for (B)  
 { 
 
  …  code … 
 
 
} 
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Invariant Inference 

•  An old problem 

•  A different approach with two ideas: 
1.  Separate invariant inference from the rest of the 

verification problem 

2.  Guess the invariant from executions 
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Why? 

•  Complementary to static analysis 
–  underapproximations 
- “see through” hard analysis problems 

•  functionality may be simpler than the code 

•  Possible to generate many, many tests 
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Nothing New Under the Sun 

•  Sounds like DAIKON? 
–  Yes! 

•  Hypothesize (many) invariants 
–  Run the program 
–  Discard candidate invariants that are falsified 
–  Attempt to verify the remaining candidates 
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A Simple Program 

•  Instrument loop head 

•  Collect state of program 
variables on each 
iteration 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 



A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 
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A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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Another Approach 

•  Data 

 
Alex Aiken, Stanford 11 

s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

s y 
0 0 
1 1 
2 2 
3 3 



Arbitrary Linear Invariant 

•  Data 
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as + by = 0 
s y 
0 0 
1 1 
2 2 
3 3 



Observation 
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Observation 
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Observation 

Alex Aiken, Stanford 15 

as + by = 0 

s y 
0 0 
1 1 
2 2 
3 3 

w 
a 
b 

0 
0 

 
NullSpace(M) 



Linear Invariants 

•  Construct matrix M of observations of all 
program variables 

•  Compute NullSpace(M) 
 
•  All invariants are in the null space 
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Spurious “Invariants” 

•  All invariants are in the null space 
–  But not all vectors in the null space are invariants 

•  Consider the matrix 
 

•  Need a check phase 
–  Verify the candidate is in fact an invariant 
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s y 
0 0 



An Algorithm 

•  Check candidate invariant 
–  If an invariant, done 

–  If not an invariant, get counterexample 
•  A reachable assignment of program variables falsifying 

the candidate 

•  Add new row to matrix 
–  And repeat 
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Termination 

•  How many times can the solve & verify loop 
repeat? 

•  Each counterexample is linearly independent 
of previous entries in the matrix 

•  So at most N iterations 
–  Where N is the number of columns 
–  Upper bound on steps to reach a full rank matrix 
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Summary   

•  Superset of all linear invariants can be 
obtained by a standard matrix calculation 

•  Counter-example driven improvements to 
eliminate all but the true invariants 
–  Guaranteed to terminate 
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What About Non-Linear Invariants? 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + y;   

  y := y + 1; 

} 



Idea 

•  Collect data as before 

•  But add more columns to the matrix 
–  For derived quantities 
–  For example, y2 and s2 

•  How to limit the number of columns? 
–  All monomials up to a chosen degree d 

[Nguyen, Kapur, Weimer, Forrest 2012] 
Alex Aiken, Stanford 22 



What About Non-Linear Invariants? 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + y;   

  y := y + 1; 

} 

1 s y s2 y2 sy 

1 0 0 0 0 0 

1 1 1 1 1 1 

1 3 2 9 4 6 

1 6 3 36 9 18 

1 10 4 100 16 40 



Solve for the Null Space 
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a + bs + cy+ ds2 + ey2 + fsy = 0 

1 s y s2 y2 sy 

1 0 0 0 0 0 

1 1 1 1 1 1 

1 3 2 9 4 6 

1 6 3 36 9 18 

1 10 4 100 16 40 

w 
a 
b 
c 
d 
e 
f 

0 
0 
0 
0 
0 
0 

-2s + y + y2 = 0 Candidate invariant: 



Comments 

•  Same issues as before 
–  Must check candidate is implied by precondition, is 

inductive, and implies the postcondition on 
termination 

–  Termination of invariant inference guaranteed if 
the verifier can generate counterexamples 

•  Experience: Solvers do well as checkers! 
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Experiments 
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Summary to This Point 

•  Sound and complete algorithm for algebraic 
invariants 
–  Up to a given degree 

•  Guess and Check 
–  Hard part is inference done by matrix solve 
–  Check part done by standard SMT solver 
–  Much simpler and faster than previous approaches 
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What About Disjunctive Invariants? 

•  Disjunctions are expensive 

•  Existing techniques severely restrict 
disjunctions 
–  E.g., to a template 
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Good States 
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Separating Good States and Bad States 
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Separating Good States and Bad States 
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More Precisely . . . 

•  A state is a valuation of program variables 

•  Correct programs have good and bad states 
–  All reachable states are good 

•  Because we assume the program is correct 
–  Assertions define the bad states 

•  States that would result in the assertion being violated 

•  An invariant is a separator 
–  Of the good states from the bad states 
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From Verification to Machine Learning 

•  From data we want to learn a separator of the 
good and bad states 

•  This is a machine learning problem 
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Goals 

•  Produce boolean combination of linear 
inequalities 
–  Without templates 

•  Predictive 
–  Generalizes well from small test suite 

•  Efficient 
–  Hard, but more on this later 
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PAC Learning 

•  Given some positive and negative examples 
–  Learn separator 

•  Separator is Probably Approximately Correct 
–  With confidence 1 – x the accuracy is 1 – e 
–  The number of examples is m = poly(1/x,1/e,d) 
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Example for Good and Bad States 
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x	
  :=	
  y;	
  
while(x	
  !=	
  0)	
  do	
  
	
  	
  x	
  :=	
  x-­‐1;	
  
	
  	
  y	
  :=	
  y-­‐1;	
  
assert	
  y	
  =	
  0	
  



Invariants 

•  Arbitrary boolean combination of  
–  Equalities and 
–  Inequalities 
–  Over program quantities 

•  Note “program quantities” includes variables 
and induced quantities (like x2) 
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First Part 

•  Run tests to get good states 

•  Run previous algorithm to infer equalities E 

•  Sample bad states 
–  Consider while	
  B	
  do	
  S;	
  assert	
  Q	
  
–  Sample from :B	
  Æ :Q	
  Æ E	
  
–  Sample from :B	
  Æ WP(assume(B);S,:Q)	
  Æ E 

Alex Aiken, Stanford 38 



Idea 

•  Good and bad states are points in d-
dimensional space 

•  Inequalities are planes in this space 

•  Must pick a set of planes that separate every 
good from every bad state 
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Picture 
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•  How many planes 
are required? 
–  At most md 

–  m is # points 
–  d is dimensionality 

•  Puts every point in 
its own cell 



Theorem 

•  md planes (inequalities) would be awful 

•  PAC learning can find a subset of the planes 
that separate the positive and negative points 
–  With O(s log m) planes 
–  Where s is the size of the minimal separator 
–  And m is roughly  ds log ds …(other factors) … 
–  In time md+2 
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Simple Example 
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Disjunction Example 
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Algorithm 

•  Consider a bipartite graph 
–  Connects every good and bad state 

•  Repeat 
–  Pick a plane cutting the maximum number of 

remaining edges 
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Analysis Ingredients 

•  md possible planes 

•  s = m2 are a separator 

•  The greedy strategy in time md+2 finds s log m 
planes 
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Comments 

•  The fact that there is only a log factor 
increase in number of planes over the minimum 
is important 
–  Avoids overfitting 

•  In practice, the number of planes is small 
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Efficiency 

•  The general algorithm is too inefficient 

•  Impose some assumptions common to 
verification techniques 
–  Reduce set of candidate planes to polynomial 
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Predicate Abstraction 

•  The invariant is an (arbitrary boolean 
combination) of predicates in T 

•  Can find a PAC separator in time O(m2|T|) 
–  Even though the complexity of finding an invariant 

is NPNP complete 
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Abstract Interpretation 

•  Efficient algorithms for restricted abstract 
domains 
–  Boxes  O(m3d) 
–  Octagons O(m3d2) 
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Boxes 
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Boxes 
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Check Phase 

•  Use Boogie 

•  For counter-examples 
–  Satisfies precondition, add as positive example 
–  Violates assertion, add as negative example 
–  If can’t label, add as a constraint 

•  Increases the guess size 
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Experiments 
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Application: Equality Checking 

•  Have extended these techniques to checking 
equality of arbitrary loops 
–  Guess and verify a simulation relation 
–  Mine equalities between the two loops as a guide 

•  Able to prove code generated by gcc –O2 
equivalent to CompCert 
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Discussion 

•  Sound invariant inference based on PAC 
learning 

•  Machine learning/data mining techniques to 
–  Handle disjunctions 
–  Non-linearities 

•  Connects complexity of learning and 
complexity of verification 
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Discussion 

•  Like predecessors, focus on numerical 
invariants 
–  Many other interesting aspects of programs not 

covered 
–  Data structures, arrays, concurrency, higher-order 

functions … 

•  This is where we are headed … 
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Thanks! 

Questions? 
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